•   Statistics and probability MAP22MT04-3001 04.03.2023-01.05.2023  3 credits  (PRE21D-V) +-
    Competence objectives of the study unit
    - The student knows basic probability theory and can use different statistical distributions to solve problems
    - The student can statistically analyze and present a data material in a relevant way
    - The student can apply regression models to different data sets
    Prerequisites
    Functions an equations 1,
    Geometry and equations,
    Functions an equations 2
    Derivator and integrals
    Content of the study unit
    Statistics
    - descriptive statistics
    - probability theory
    - discrete and continuous distributions
    - Excel as a tool for analyzing data

    Curve fitting and regression
    - matrix calculus and linear algebra
    - linear regression - least squares method
    - linearization
    - mathematical software (Excel, Mathcad or other program) to build regression models
    Assessment criteria
    Failed (0)
    Uppfyller ej kraven för vitsord 1. (not translated)
    Assessment criteria – satisfactory (1-2)
    Statistics and computational skills: Know the basics of statistics and can perform simple calculations
    Curve fitting and regression: Know the basics of regression analysis
    Mathematics software: Can use a software to solve basic problems
    Assessment criteria – good (3-4)
    Statistics and calculation skills: Is familiar with statistics and can perform relevant calculations
    Curve fitting and regression: Is familiar with the concept of regression and can perform curve fitting of technical models
    Mathematics software: Can use a software to solve applied problems
    Assessment criteria – excellent (5)
    Statistics and computational skills: Is well versed in statistics and can perform more advanced statistical calculations.
    Curve fitting and regression: Can independently perform curve fitting and regression models in advanced technical problems
    Mathematics software: Can use a software to solve advanced problems in mechanical engineering

    Name of lecturer(s)

    Roger Nylund

    Learning material

    - Teorikompendium och övningsuppgifter
    - Relevanta läroböcker som rekommenderas vid kursstart (not translated)

    Learning methods

    Föreläsningar, räkneövningar och datorövningar (not translated)

    Objects, timing and methods of assessment

    Tentamen (max 30 p)
    Vitsordsskala:
    10 p 1
    14 p 2
    18 p 3
    22 p 4
    26 p 5

    Slutlig bedömning diskuteras och bestäms vid kursstart i samarbete med studeranden. (not translated)

    Teaching language

    Swedish

    Timing

    04.03.2023 - 01.05.2023

    Enrollment date range

    01.12.2022 - 03.03.2023

    Group(s)
    • PRE21D-V
    Responsible unit

    Faculty of Technology and Seafaring

    Teachers and responsibilities

    Tom Lillhonga

    Degree Programme(s)

    Degree Programme in Mechanical and Production Engineering

    Campus

    Vasa, Wolffskavägen 33

    Assessment scale

    H-5

    Practical training and working life co-operation

    Föredrag av gäster från näringslivet. (not translated)

    Exam dates and retake possibilities

    Presenteras på kursens Moodle-sida (not translated)

    Timing and attendance

    Period 4, våren 2023 (not translated)

    Content scheduling

    Närstudier 36 timmar.
    Studerandens arbete på egen tid: i medeltal 45 timmar (not translated)

    Assessment criteria
    Failed (0)

    Uppfyller ej kraven för vitsord 1. (not translated)

    Assessment criteria – satisfactory (1-2)

    Statistik och beräkningskompetenser: Känner till grunderna i statistik och kan utföra enkla beräkningar
    Beräkningsprogram: Kan använda ett beräkningsprogram för lösning av grundläggande problem (not translated)

    Assessment criteria – good (3-4)

    Statistik och beräkningskompetenser: Är insatt i statistik och kan utföra relevanta beräkningar
    Beräkningsprogram: Kan använda ett beräkningsprogram för lösning av tillämpade problem (not translated)

    Assessment criteria – excellent (5)

    Statistik och beräkningskompetenser: Är väl insatt i statistik och kan utföra mer avancerade statistiska kalkyler.
    Beräkningsprogram: Kan använda fler än ett beräkningsprogram för lösning av problem inom produktionsteknik (not translated)